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RIERABGRATION ™S

0.1 Introduction

In mathematics, the RiemannStieltjes integral is a generalization of the
Riemann integral , named after Bernhard Riemann and Thomas Joannes
Stieltjes. The definition of this integral was first published in 1894 by Stielt-
jes . It serves as an instructive and useful precursor of the Lebesgue integral
, and an invaluable tool in unifying equivalent forms of statistical theorems
that apply to discrete and continuous probability .

0.2 Preliminaries

Definition 0.2.1. Let [a,b] be a given interval by a partition P of [a,b] we
mean a finite set of point g, x4, ..., T, where

a = TIp

IA

T ‘: J'h..; S vrn pa I’

Iy

IA

we write
Azri=z,-2;—1. (i=1,..,n)

now suppose f is a bounded real function defined on [a,b] . correspond-
ing to cach partition P of [a,b] me put

M; =supf(z) (ziay Sz 2xI)),
mi =inff(z) (zia 2z 273),

n

U(p! f) = Z M;Az;,

=1

L(p- f) - Zm*AI"’
=1
and finally
-b
/ fdz = inf U(P, f) (0.1)

/ " fdz = inf L(P.J) (0.2)
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where the inf and the sup are taken over all partitions P of [a,b] . the left
member of (0.1) and (0 .2) are called the upper and lower riemann integral
of f over [a,b] , respectively
if the upper and lower integrals are equal , we say that f is riemann-integrable
on [a,b] , we write f € R (that is , R denotes the set of riemannintegrable
function) , and we denote the common valu of (0.1) and (0.2) by

i 03

/a b fdz (0.4)

This is the riemann integral of f over [a,b] . since f is bounded , there

or by

exist two number , m and M , such that

Hence , for every P

so that the number L(p,f) and U(p,f) form bounded set . This shows that
the upper and lower integrals are defined for every bounded function f . The
question of their equality , and hence the question of the integrability of f ,
is a more delicate one . Instead of investigating it separately for the Riemann
integral , we shall immediately consider a more general situation

Definition 0.2.2. Let a be a monotonically increasing function on (a,b]
(sincea(a) and o(b) are finite , it follows that « is bounded on [a,b]) . Cor-

responding to each partition P of [a,b,] we write

Aai = CY(.’II,;) — C!(il:i s 1)

it is clear that Aq; > 0 . for any real function f which is bounded on [a,b]

we put

UP,f,0) = MiAz:

i=1

2



n
L(P, f,a) = Z MAzy
t=1

where M;, m; have the same meaning as in defination 2.1, and we define

]

/ fdz =inf U(p, f,a), (0.5)
b

[ fio = sup L(p, 5, ), (06)

the inf and sup again being taken over all partitions .

if the left member of (0.5) and (0.6) are equal , we denote their common
valu by

fdz (0.7)

or sometimes by

fdz(z) (0.8)

this is the Riemann-stieltijs integral (or simply the stieltjes integral) of
fwith respect to a , over [a,b]
if (0.7) exists i.e , if (0.5) and (0.6) are equal , we say that f is integrable
with respect to « , in the Riemann sence , and write f € R(«) .
By taking a(z) = z, the riemann integral is seen to be a special case of the
riemann-stieltjes integral . let us mention explicity , however that in the
general case o need not even be continuous .
A few word should be said about the notation . we prefer (0.7) to (0.8)
. since the letter (o) which appers in (0.8) adds nothing to the content
of (0.7) . it is immaterial which letter we use to represent the so called

("variableofintegration’). for instance , (0.8) is the same as

b
/a f(w)daly).

The integral depends on [, «, « and b, but not on the variable of integration
, which may as well be omitted .



The role r the vari 8 ion i
: role played by the variable of integration is quite analougs to that of the
index of summation :the symbols

n n
i=1 Ci k=1 Ck

mean the same thing , since each means ¢; + ¢z + .... + cp.
Of course , no harm is done by inserting the variable of integration , and in
many case it is actually convenient to do so .
We shall now investigate the existance of the integral (0.7). without saying
so every time f will be assumed real and bounded , and o monotonically
increasing on [a,b] ;and ,when there can be no misunderstanding ,we shall

write [ in place of fab

Definition 0.2.3. We say that the partition(P* is a refinement of P if P* D
P (that is, if every point of P is a point of P* ). Given two partitions,Py and
P,, we say that P* is their common refinement if P* = PLU P,

Theorem 0.2.4. if P* is a refinement of P, then

L(P, f,a) < L(P", f, @) (0.9)

and
U f,0) < L(P, f,0). (0.10)

Proof. To prove (0.9), suppose first that P* contains just one point more
than P . Let this extra point be z* and suppose T;_; < &* < x;, where

z;—1andz; are two consecutive points of P. Put
Wy = inf f(z) (i < v < 2),
Wy = inf f(z)(z. < & < 25),

Clearly w; > msandws > m;, where as before ,

m = inf f(z) (@i < & < ),
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Hence
L(P*, f,a) — L(P, F, )
= Wila(z*) — a(zi1) | + Wala(z;) — alz*)] — mi[alz:) — a(zis1)]

= (Wl et mi)[a(af* = O.’(ﬂ?i._l)] -+ (Wg — m,-)[oz(:l:i) - C!(J,‘*)] > 0.

If P* ¢ i ints
. contains K points more than P , we repeat this reasoning K times, and
arrive at (0.9). The proof of (0.10) is analogous.

O
Theorem 0.2.5. fi’u fdz < f"’ fdz
Proof. Let P* be the common refinement of two partitions P; and P.
by theorem 2.4
L(Py, f,e) < L(P*, f,a) S U(P*, f,a) S U(P, f,@)-
Hence
L(Plaf,a;) gU(P%faa) (011)
If P, is fixed and the sup is taken over all P;,(0.11) gives
/ fdz < U(Pe, f,q). (0.12)
The theorem follows by taking the inf over all P,in(0.12). O

Theorem 0.2.6. f € R(a) on [a, b] if and only if for every €> 0 there
exists a partition P such that

U(P, f,a) — L(P, f,a) <€. (0.13)

Proof. For every P we have

WP L)< [ flo< [ i <UPfa)

Thus(0.13) implies

05/_fdx—/_fda:<e.
5



Hence, if (0.13) can be satisfied for every €> 0, we have
/ fdo = / fdux,
That is,f € R(a)

Conversely, suppose f € R(a), and let €> 0 be given. Then there exist
partitions P, and P, such that

Uy i)~ [ e <G (0.14)
/ fdw —"L(Py, f,a) < -62- (0.15)

We choose P to be the common refinement of P; and P,. Then Theorem
2.4, together with(0.14)and(0.15), shows that

ceenr!

U(P, [,0) < U(Py, [, ) < / fda+ S < L(Py, o)+ €< L(P, o)+ €,

so that (0.13) holds for this partition P .
Theorem 2.6 furnishes a convenient criterion for integrability . before we
apply it , we state some closely related facts . O

Theorem 0.2.7. (a) If (0.13) holds for some P and some ¢, then (0.13)
holds (with the same c) for cvery refinement of P.

(b) If (0.13) holds for P = (2o, ...,Tn) and if S; , tiare arbitrary points in
[zi_l,mi], then

Z | f(s:) — f(t:) | Am; <€

(c) If f € R (a)and the hypotheses of (b) hold, then b

L b her
1Y ft)Az — | fdz|<e
i=] a



Proof. Theorem 2.4 implies (a). Under the assumptions made in (b), both
f(si) and f(t;) lie in[my, M;], so that | f(s; — f(t:) |< M3 —m;. Thus

2| f(si) = £(8) | As S U(P, f,0) = L(P, f, @)

which proves (b). The obvious inequalities

L(P, f,0) < 3 f(t)Des S U((P, f,0)

and

L(P,f,a) < / fdz <U(P, f,a)

prove (c).
Theorem 0.2.8. If f is continuous on [a, b] then feR(c) on [a,b].

Proof. Let € > 0 be given. Choose 1 > 0 so that

lo(®) ~ ofa)ln <e.

Since f is uniformly continuous on [a, b] , there exists a § > 0 such that

| f(z) = f(t) |<n (0.16)

if z € [a,b], t €[a, b],and |z —t|<
. If P is any partition of [a,b] such that Az; < ¢ for all i, then (0.16) implies

that
(Mi—m;<n  (i-1,..,n)

and therefore

n

UP,[,a) = L(P, f,0) = Y _(M; — m;)Axz;

i=1



n
S 1} M A(l?“' = '),[Qg(b) e (.\'((L)] <E.
v=)

By Theorem 2.6, f € R(w).
O

mn . . 5 : :
Theorem 0.2.9. If f is monotonic [a, b], and if a is continuous on [a, b],

then f € R(a). ( We still assume, of course, that a is monotonic).

Proof. Let €> 0 be given. For any positive integer n, choose a partition such
that

Aq; = a(b) = afa) (i=1,..n).
n

This is possible since « is continuous .
We suppose that f is monotonically increasing (the proof is analogous in the
other case). Then

M= f(z:), mi=f(zis) (E=1,..,n)

so that

0P, 1,0) - 1P, £,0) = 22D S0 — paicn)]

i=1
a(b) — ala
GRS
if n is taken large enough. By Theorem 2.6, feR(a) O

Theorem 0.2.10. Suppose fis bounded on [a, bj, f has only finitely many
points of discontinuity on [a, b], and a is continuous at every point at which
f is discontinuous. Then f € R(a). |

Proof. Let €> 0 be given. Put M = sup | f((z) |let E be the set of points
at which f is discontinuous. Since E is finite and o is continuous at every
point of E, we can cover E by finitely many disjoint intervals [u;,v;] C [a, b}
such that the sum of the corresponding differences a(vj) — ce(uj) is less than



n

<N Z Ay = 5[a(b) — a(a)] <€ .

i=1
By Theorem 2.6, f € R(«).
' O

Theorem 0.2.9. If f is monotonic [a, b], and if o 18 continuous on [a, b],
then f € R(«a). ( We still assume, of course, that o is monolonic).

Proof. Let €> 0 be given. For any positive integer n, choose a partition such
that

a(b) — a(a)
n

Aai =

This is possible since « is continuous .
We suppose that f is monotonically increasing (the proof is analogous in the
other case). Then

M; = f(z;), mi=f(zi-) (=1 ey M)

so that
0P 0) = 1P, o) = 22D S50 — i)

_ 2O =2 17 - (o)) < e
if n is taken large enough. By Theorem 2.6, feR(c) O

Theorem 0.2.10. Suppose fis bounded on [a, b], f has only finitely many
points of discontinuity on [a, b], and o is continuous at every point at which
f is discontinuous. Then f € R(a).

Proof. Let €> 0 be given. Put M = sup | f((z) |let E be the set of points
at which f is discontinuous. Since E is finite and « is continuous at every
point of E, we can cover E by finitely many disjoint intervals [uj,v;] C [a, b
such that the sum of the corresponding differences a(vj) — a(uyj) is less than



€. Furthermore, we can place these intervals in such a way that every point
of EN(a,b) lies in the interior of some [u;, v;]. Remove the segments (uj, ;)
from [a, b]. The remaining set K is compact. Hence f is uniformly continuous
on K, and there exists § > 0 such that | f(s) — f(t) <€ iff s€ K,| s —1 |<d
Now form a partition P = (zq, Z...T,) of [a, b], as follows : Each u; occurs
in P. Each v; occurs in P. No point of any segment(u;, v;) occurs in P. If ¢
is not one of theu; , then Az; < ¢

Note thatM; — m; < 2M for every i, and thatM; —m; <€e unless X;-1 18
one of the u; Hence, as in the proof of Theorem 2.8,

U(P, f,o) — L(P, f,a) < [a(b) — a(a)] € +2M €.

Since € is arbitrary, Theorem 2.6 shows that f € Ra.
Note: If f and a have a common point of discontinuity, then f need not be

in R(a). shows this.
(

Theorem 0.2.11. Suppose f € R(a) on [a,b], m < f < M, ¢ is continuous
on [m, M), and h(z) = ¢(f(z)) on [a,b]. Then h € R(c) on [a, b).

Proof. Choose €> 0. Since ¢ is uniformly continuous on[m, M|,there exists
5> 0 such that § <€ and | ¢(s) — ¢(t) <€ if [ s —1 |< dand s,te [m, M] .
Sincef € R(«), there is a partition P = (Zo, Z1, ..., Tp)of[a, b] such that
U(P, f,a) — L(P, f, a) < 62

LetM;, m; have the same meaning as in Definition 2. 1, and letM;, m;
be the analogous numbers forh. Divide the numbers 1, ...,n into two classes
) 65(14) if M; —m; < 0,1 e Bif M; —m; =2 0.

For i € A,ourchoiceoféshowsthatM; — m; <€ e.

For i€ B,M; —m; <2K,whereK = sup | ¢(t) | m <t < M.by
(0.16) we have

65 A <Y (M —mi)Day; < & (0.17)

i€b i€b



so that) .. p Aai < 6. it follows that
U(Ph,a) = L(P, hy @) = 30 (M — mi) Aoy + 324 g(Mif — mi) Aok

<€ [a(b) — a(a)] + 2K6 <€ [a(b) — a(a) + 2K].

Since € was arbitrary, Theorem 2.6 implies that h € R(c).
Remark: This theorem suggests the question : Just what functions are
Riemann-integrable ? The answer is given by . .

0.3 Properties of the integral ,
Theorem 0.3.1. (a) If f; € R(a) and f € R(a) on [a,b] ,then

fi+ f2 € R()
cf € R(a)

for every constant c ,and

/ab(fl + fo)dz = /ab frdz + /ab fods,

/bcfda:=c/bfda:
(b) if fi(z) < fa(z) on [a, 0], then

b b
/ fidz < / fode.

(c)if f € R(a) on [a, b] and ifa <c <b ,then f € R(a) on [a,c] and on

[c,b] and
c b b
/ fd:L'-’r/ fd$=/ fdz.
(d) if f € R(a)on[a,b] and if f(z) |< Mona,b], then

vl ’ fdz < Mio(b) - ofa)]

10



(e)iff € R(a1)andf € R(az),thenf € R(an + o) and
b b b
fl(en) + (0a) = [ fdmr+ [ sao;

if f € R(a)and c is a positiveconstant,thenf € R(ca)and

/ub fd(ca) = c/ab fdz.

Proof. If f = fi1 + f» andPis any partition of [a,b], we have

L(Pvflya)_*_L(Pnf%a) < L(P7f7a) _<_ U(P7f7a) g U(P7 f]_,Od)'i‘U(P, f21a)‘
(0.18)

if f; € R(a) and fo € R(),let €> 0 be given . There are partitions P;
(j = 1,2)such that

U(}DJ, fj) a) g L(PJa .fj>7 C\!) <€
These inequalities persist if P,and P, are replaced by their common refinement P.
Then (0.18) implies

UP, f,a)— L(P, f,a) <2 €

, which proves that f € R(c).
With this same P we have

U(P, fj,a) < /fjd$+ € (=12
hence (0.18) implies

[ fas<U(P.1,0) < [fdo+ [ fudor2e

Since € was arbitrary, we conclude that

/ fdz < / fidz + / fodz (0.19)

if we replace f; and f, in( 21) by—f; and — f5’ the inequality is reversed,
and the equality is proved.

11



The proofs of the other assertions of Theorem 3.1 are 80 similar that we omit

the details. In part (c) the point is that (by passing to refinements) we may

restrict ourselves to partitions which contain the point ¢, in approximating

[ fdx
O

Theorem 0.3.2. If f € R(c) andg € R(a on [a,b], then

(a) fq € R(a);
()| f | R(e)and | [0 fdz |< [, | f | do

Proof. If we take ¢(t) = t*, Theorem 3.1 shows thatf2 € R(a) if f € R().
The identity

afg=(f+9?—(f—9)

completes the proof of (a).
If we take ¢(t) =| t |, Theorem 3.1 shows similarly that | f |€ R(a), Choose

¢ = +1, so that

c/fdx}O

Then

|/fda:|=c/fd:n=/cfda:§/lf\d:c,

sincecf <| f |- O

Definition 0.3.3. The unit step function I defined by

I(z) =0(z <0), 1(z>0)

Theorem 0.3.4. If a < s < b, f is bounded on [a, b], f is continuous at s,
and a(z) = I(z — s), then

/ ’ fdo = £(5

12



() (PR y e z /] o (
Proof. Consider partitionsP = (g, 2123, x3), wherezg = o, andz; = 4

ry <ag =0 then
UP, f,0) = My, L(P,[,a)=my.
Sincef is continuous at s, we see thatM, andmy converge to f(s) as z, — 5 O

Theorem 0.3.5. Suppose Cp, = 0 for 1,2,3,...,). ¢ converges, 8, i8 o s¢-
quence of distinct points in (a, b), and
a(z) =3 cl(z —s,)

Let f be continuous on [a, b]. Then

/ b fdz = i cnf(sn)- (0.20)

Proof. The comparison test shows that the series converges for every x. Its
sum a(z) is evidently monotonic, and a(a) = 0,a(b) = > c, .(This is the
type of function that occurred in Remark .

Let €> 0 be given, and chooseN so that

o0
S <e
N+1

Put

ay(z) = chl(x —5,), az)= i cal(z — sp),

N+1
By Theorems 3.1 and 3. 4,

b
/a fdz, = chf(sn)- (021)

since ay(b) — ay(a) <€

b
[ e, &

13



whereM = sup | f(x) | Sincea = a1 + a2, it follows from (0.24) and (0.25)
that

‘ f: fd’l) i Zﬁ:l Cnf(S") ‘< A’IG'

If we let N — oo, we obtain (0.20). .

Theorem 0.3.6. Assume « wncreases monoton‘ically and v € R on [a,
bj. Let f be a bounded real function on [a, b]. Then f € R(a) if and only
iffar € R In that case

[? fdz = [} f@)a(@)d

Proof. Let €> 0 be given and apply Theorem 26toa : Thereisa partition
P = xo, ..., Tnof[a, b] such that

U(P,o') - L(P,a) <€ . (0.23)

The mean value theorem furnishes points t; € (i1, ;] such that
ACY{ = oz' (ti)AfI:i
for i = 1,...,n. IfS; € [Ti-1, x;], then
S er(s) — (k) | Az <€ (0.24)
i=1

by (0.23) and Theorem 2.7(b). PutM = sup | f (z) | . Since

Z f(si)Da; = Z f(si)er (ti) A
i=1

i=1

it follows from (0.24) that

1S fs)Aa =) s (s)An IS M e (0.25)
i=] i=1

In particular,

-~
-

J(s)Aa; S U(P, far) + M €,

i=]

14



for all choices ofS; € [|ri—1 — @], s0 that

U f,a) <UL fia)+ME.

The same argument leads from (0.25) to

U(P, f,a) SU(P, fya) + M €

. Thus

| U((P, f,@) =U((P, fy) [S M € (0.26)

Now note that (0.23) remains true if P is replaced by any refinement.

Hence (0.26) also remains true. We conclude that
-b ~b
| / fdz —/ fza(z)dz |<K M €.
a a
But € is arbitrary. Hence

[ fdz = [ Jzee(2)de,

for any bounded f The equality of the lower integrals follows from (0.25)
in exactly the same way. The theorem follows. O

Remark The two preceding theorems illustrate the generality and flex-
ibility which are inherent in the Stieltjes process of integration. If o is a
pure step function [this is the name often given to functions of the form , the
integral reduces to a finite or infinite series. If « has an integrable derivative,
the integral reduces to an ordinary Riemann integral. This makes it possible
in many cases to study series and integrals simultaneously, rather than sep-
arately.

To illustrate this point, consider a physical example. The moment of inertia
of a straight wire of unit length, about an axis through an endpoint, at right

15




angles to the wire, is

S
/ a*dm (0.27)
Jo

where m(x) is the mass contained in the interval [0,z]. If the wire i8
s ’ ‘ ¢ ¢ b it -
regarded as having a continuous density p, that is, if m (x) = p(x), then
(0.27) turns into

/ l oy (x)d (0.28)

0
On the other hand, if the wire is composed of masses m; concentrated

at points x; (0.27) becomes

S a?m;, (0.29)

Thus (0.27) contains (0.28) and (0.29) as special cases, but it contains
much more ; for instance, the case in which m is continuous but not every-
where differentiable.

Theorem 0.3.7. (change of variable) Suppose (p is a strictly increasing con-
tinuous function that maps an interval [A, B] onto [a, b]. Suppose « is
monotonically increasing on [a, b and f € R(a) on [a, b]. Define B and g
on [A, B] by

Bly) = ale(y), 9(y) = fle)).

Then g € R(B) and ff gdp = f; fdz

Proof. To each partition = (zo,...,%,) of [a, b] corresponds a partition
Q = (Yo,..-,yn) of [A, B], so that z; = p(y;). All partitions of [A, B] are
obtained in this way. Since the values taken by f on [@i-1, ;),are exactly the
same as those taken by g on [y;—1, %], we see that

U(Q,9,8)=U(P, /), L(Q,9,8) = L(P, f,q) (0.30)

Since f € R(«) P can be chosen so that both U (P, f,&) andL(P, f, )
are close to [ fdz Hence (0.30), combined with Theorem 3.6, shows that

16



g € R(B) and that holds. This completes the proof.

Let us note the following special case :
Take a(z) = x. Then g = ¢ . Assume ¢’ € R on [A, B]. If Theorem 3.6is

applied to the left side of , we obtain

[P fde = 7 fle@)e (v)dy-

0.4 Integration and differentiation

We still confine ourselves to real functions in this section. We shall show

that integration and differentiation are, in a certain sense, inverse operations.

Theorem 0.4.1. Letf € R on [a, b]. Fora <z < b, put

F(z) = / ().
Then F is continuous on [a, b ],. furthermore, if f is continuous at a point
zo of [a, b], then F is differentiable at xo , and
F (o) = f(%o)-

Proof. Since f € R f is bounded Suppose | f@) | M fora <t < Db if
a <z <y<b, then

P~ F@) = [ ' )t |< My — ),

¢

by Theorem 3.1(c) and (d). Given €> 0, we see that

| F(y) — F(z) |<€,

provided that | y — = |<€ /M. This proves continuity (and, in fact, uniform
continuity) of F.
Now suppose fis continuous at o . Given €> 0, choose § > Osuch that

| F(t) = f(zo) |<€
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if | t — @0 |< d, and a <t < b. Henee, if

_s<s<apSt<wp+9 and a<s<t<b,

we have ,by theorem 3.1 (d)

| ) = F(S) — f(xo) |=| _.___f — f(wo)]du |<€ .

it follows that F(xo) = f (10)
O

Theorem 0.4.2. The fundamental theorem of calculus If f € R on
[a, b] and if there is a diffe rentiable function Fonla,b] such thatF' = f, then

/a f(z)de = F(b) — F(a).

Proof. Let €> 0 be given. Choose a partitionP = (o, .- ,Tn)of[a,b] so
thatU (P, f) — L(P, f) <€ . The mean value theorem furnishes points t; €

[z;—1,z;] such that

F(z:) — Fzio) = f(t:) Az
for i = 1,.....n thus

Z f(t)Az; = F(b) — F(a).
It now follows from Theorem 3.6(c) that

| 7(b) /f Ydz |<€

Since this holds for every €> 0, the proof is complete.
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Theorem 0.4.3. (Integration by parts ) Suppose F and G are differen-
tiable functions on [a, D F' = f € R, and G'=g € R Then

b
‘WF@M@M=F@&M—MMQQ—/f@mwﬂm

a

Proof Put H(z) = F(2)G(x) and apply Theorem 4.2 to H and its derivative.
Note thatH' € R,

0.5 Integration of vector -valued function

Definition 0.5.1. Let fi,..., fx be real functions on [a, b], and letf =
(f1.--, fx) be the corresponding mapping of [a, b] into RF. If o increases
monotonically on [a, b], to say thatf € R(a) means that f; € R(a) for j =
1,...,k Ifthisis the case, we define

/:fdrc: (/abfldw,...,/abfkdw).'

In other words, [ fdz is the point in R* whose jth coordinate is [ f;dz
Tt is clear that parts (a), (c), and (e) of are valid for these vector-valued

integrals ; we simply apply the earlier results to each coordinate. The same

is true . To illustrate, we state the analogue .

Theorem 0.5.2. If f and f map [a, b] into R*, if f € R on [a, b], and if
F' = f, then

/U@&=F@~F@)

The analogue of Theorem 6.2(b)offers some new features, however, at east in

its proof.

Theorem 0.5.3. if I' maps [a, b ] into R* and if f € R(c) for some mono-
tonically increasing function « on [a, b], then | f |€ R(c), and
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| [0 fda |< [P 1 f | do

Proof. If fi..., fn ave the components of f, then

| £ 1= () + e+ POV, (0.31)

By , each of the functions /2 belongs to R(a); hence so does their sum.
Since 22 is a continuous function of x, Theorem 4.6 shows that the square-
root function is continuous on [0, My, for every real M. If we apply once more,

(0.31) shows that | f |€ R(a).
To prove (40), puty = (Y1, Yi), where yg = [ fidz. Then we have y = [ fdz

and
v = Yu = Yy [ o= [ uifads

By the Schwarz inequality,

STufi@) <lyll fE) | (@<t <)
hence Theorem 4.1(b) implies

|y|2<|y|/|f|dm'on

if y = 0, is trivial if y on , division of ( by | y | gives, O

0.6 Rectifiable

We conclude this chapter with a topic of geometric interest which pro-
vides an application of some of the preceding theory. The casek = 2(i.e., the
case of plane curves) is of considerable importance in the study of analytic

functions of a complex variable.

Definition 0.6.1. A continuous mapping y of an interval [a, b intoR¥is
called a curve inR*¥ To emphasize the parameter interval [a, b], we may also
say that y is a curve on [a, b).

If y is one-to-one, y is called an arc.
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fy(a) = y(b), y is gaid to be a closed curve.

It should be noted that we define a curve to be a mapping, not a point set.
Of course, with each curve y inRFthere is associated a subset of R* namely
the range of y, but different curves may have the same range.

We associate to each partition P = 2, ..., &, of [a, b] and to each curve y on

[a, b] the number

APY) = ly(:) = y(mic) |,
1=1

The ith term in this sum is the distance (inR*) between the pointsy(z;i-1—
1) and y(z;)’ Hence A(P,y) is the length of a polygonal path with vertices
aty(zo), y(Z1), - y(2s), in this order. As our partition becomes finer and
finer, this polygon approaches the range of y more and more closely. This
makes it seem reasonable to define the length of y as

A(y) = sup A (P,y),
where the supremum is taken over all partitions of [a, b].
If A(y) < oo, we say that y is rectifiable.
In certain cases,A(y) is given by a Riemann integral. We shall prove this for
continuously diffe rentiable curves, i.e., for curves y whose derivative y’ is

continuous.

Theorem 0.6.2. If y’ is continuous on [a, b], then y is rectifiable, and

b
Ao = [ v L
Proof. faa < z;-y < z; < b then

ek

| y(zi) — ylwi-1) [=] / y (1)dt |< / | y'(t) | dt
Jwi-1

H xt—1
Hence

b

APy) < / | y'(t) | dt

v
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for every partition P of [a, D]. Consequently,

b
ANy) < / |y (t) | dt
a
To prove the opposite inequality, let €> 0 be given. Since y’ is uni-
formly continuous on [a, b], there exists § > 0 such that

ly'(s)— |y (t) <€ if|s—t]<d

Let Z, ...,Zn be a partition of [a, b], with Az; < § for all i. If z;_1 < z; it
follows that '

|y () |<] v (z:)+ €
Hence
51y @) | dt <|y'(z:) | Azt € A

Ti—

o [ W@+ e -y @l + € A

Ti

< 7 v@iel [ W) +i@-lal +e

zi—1

| y(zi) —y(ziz1) | +2 € Az,

If we add these inequalities, we obtain

[ 1o a<n@y+2e -0

SAY)+2€(b—a)

Since € was arbitrary,

b
[ 1o 1@<Aw

L
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This completes the proof.
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